Reference Data

Total Assignment of the ¹H and ¹³C NMR Chemical Shifts of Three Bisabolane Hydrocarbons by 2D-NMR Spectroscopy

LAI-KING SY and GEOFFREY D. BROWN* Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong

Three known bisabolane hydrocarbons, *a-trans*-bergamotene, sesquiphellandrene and zingiberene, were isolated from the aerial parts of *Alpinia densibracteata*. Their ¹H and ¹³C NMR spectra were completely assigned by using a combination of ¹³C DEPT and 2D-NMR experiments (¹H–¹H COSY, single-bond ¹³C–¹H correlation, long-range ¹³C–¹H correlation and INADEQUATE). © 1997 by John Wiley & Sons, Ltd.

Magn. Reson. Chem. 35, 424–425 (1997) No. of Figures: 0 No. of Tables: 2 No. of References: 10

KEY WORDS NMR; ¹³C NMR; ¹H NMR; bisabolane sesquiterpene; Alpinia densibracteata; 2D homonuclear and heteronuclear correlations; 2D-INADEQUATE

Received 16 September 1996; accepted 9 November 1996

INTRODUCTION

During the course of our investigations of *Alpinia densibracteata* T. L. Wu and Senjen, we isolated three bisabolane sesquiterpene hydrocarbons, α-trans-bergamotene (1), sesquiphellandrene (2) and zingiberene (3). Full ¹³C and partial ¹H data have been reported ¹ for 1 but no assignments have been given. Fully assigned ¹³C and partial ¹H data have been suggested ² for 2, but published NMR assignments ³ for the closely related compounds 3 seemed to be inconsistent with those for 2. We therefore decided to undertake a detailed NMR study of 1–3 utilizing a range of 1D (¹H, ¹³C and ¹³C DEPT) and 2D (¹H–¹H

* Correspondence to: G. D. Brown. Contract grant sponsor: CRCG.

COSY, single-bond ¹³C-¹H correlation, ⁴ long-range ¹³C-¹H correlation and INADEQUATE) experiments.

EXPERIMENTAL

All NMR spectra were recorded on a Bruker DRX-500 spectrometer in CDCl₃ solutions; tetramethylsilane (TMS) was used as an internal standard. Resonance multiplicities for 13 C were established via the acquisition of DEPT spectra. For the DEPT sequence, ⁵ the width of a 13 C 90° pulse was 5.5 μ s, that of a 1 H 90° pulse was 8.2 μ s and the $(2J)^{-1}$ delay was set at 3.4 ms.

The homonuclear $^{1}H^{-1}H$ shift correlated two-dimensional diagrams were obtained using the COSY-45 pulse sequence. The spectral widths were 4000 Hz; spectra were collected as 1024×256 blocks of data and were processed by sinusoidal multiplication in each dimension, followed by symmetrization of the final data matrix. Other parameters were as follows: number of increments in t_1 , 256; number of scans, 16; phase cycling, 16; and relaxation delay, 2 s.

The heteronuclear 2D 13 C $^{-1}$ H chemical shift correlation experiments were carried out with proton decoupling in the F_1 dimension. The spectra were acquired with 1024×256 data points. Spectral widths of 20 000 and 4000 Hz were employed in the F_2 (13 C) and F_1 (1 H) domains, respectively. Data were processed by exponential multiplication (LB = 3 Hz) in F_2 and sinusoidal multiplication in F_1 , and zero-filling was applied in F_1 . The mixing delay for single-bond correlations was 3.4 ms, whilst for long-range (2/3) bond correlations it was 50 ms, the relaxation delay was 1.5 s and 16 phase-cycling steps were employed.

The 2D 13 C– 13 C double quantum coherence spectra 9,10 were acquired using a Bruker 2.5 mm dual probe ('microprobe:' sample size ca. 50 mg; sample volume ca. 200 μ l). Spectral widths of 20 000 Hz, a 32-step phase cycling and a data acquisition matrix of 8192×256 data points were used. Data files were processed using sinusoidal multiplication in both dimensions. The delay for the creation of the double quantum coherence was 6.25 ms (corresponding to a coupling of 40 Hz), and the relaxation delay was 4 s.

RESULTS AND DISCUSSION

Fully assigned carbon and proton chemical shifts for 1–3 are given for the first time in Tables 1 and 2, respectively. Assignments of chemical shifts for the carbon skeleton were made by analysis of INADE-QUATE spectra and assignments of attached protons was then achieved by analysis of single-bond $^{13}C^{-1}H$ correlation spectra. The results from long-range $^{13}C^{-1}H$ correlation experiments and $^{1}H^{-1}H$ COSY were also consistent with the assignments in Tables 1 and 2.

Our analysis suggests that ¹³C and partial ¹H data given in the literature for 2 were mostly correctly assigned, ² whereas ¹³C and ¹H assignments for 3 contained many errors. ³

Acknowledgement

We thank the CRCG for funding this research.

Reference Data

Table 1. ¹³ C NMR chemical shifts of bisabolanes 1–3					
Assignment	1	2	3		
1	31.6	24.5	24.5		
2	45.5	30.4	120.4		
3	144.5	143.7	131.0		
4	116.5	129.6	127.9		
5	31.3	135.1	131.0		
6	39.1	40.7	38.1		
7	41.2	36.7	36.1		
8	38.7	34.4	34.3		
9	23.8	26.1	26.0		
10	125.3	124.8	124.9		
11	130.9	131.1	131.1		
12	17.6	17.7	17.7		
13	25.7	25.7	25.7		
14	17.5	15.9	16.6		

Table 2. ¹H NMR chemical shifts of bisabolanes 1-3

110.0

21.1

23.0

15

Assignment	1	2	3
1	2.31, 1.17	1.70, 1.41	2.02, 2.02
2	2.01	2.41, 2.29	5.42
4	5.20	6.12	5.57
5	2.25, 2.13	5.56	5.61
6	2.15	2.21	2.29
7		1.55	1.56
8	1.66, 1.66	1.40, 1.21	1.40, 1.21
9	1.98, 1.98	2.03, 1.92	2.03, 1.92
10	5.16	5.09	5.09
12	1.62	1.59	1.59
13	1.70	1.67	1.67
14	0.83	0.84	0.86
15	1.66	4.73, 4.71	1.70

References

- 1. B. B. Snider and R. B. Beal, J. Org. Chem. 53, 4508 (1988).
- M. Tori, M. Aoki and Y. Asakawa, Phytochemistry 36, 73 (1994).
- D. C. Breeden and R. M. Coates, Tetrahedron 50, 11123 (1994).
- 4. A. Bax, J. Magn. Reson. 53, 517 (1983).
- D. M. Doddrell, D. T. Pegg and M. R. Bendall, *J. Magn. Reson.* 48, 323 (1982).
- W. P. Aue, E. Bartholdi and R. R. Ernst, J. Chem. Phys. 64, 2229 (1976).
- K. Nagayama, A. Kumar, K. Wüthrich and R. R. Ernst, *J. Magn. Reson.* 40, 321 (1980).
- 8. V. J. Rutar, J. Magn. Reson. 58, 306 (1984).
- A. Bax, R. Freeman and T. A. Frenkiel, J. Am. Chem. Soc. 103, 2102 (1981).
- A. Bax, R. Freeman, T. A. Frenkiel and M. H. Levitt, J. Magn. Reson. 43, 478 (1981).